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Abstract—Accurate photovoltaic (PV) power prediction has
been a subject of ongoing study in order to address grid stability
concerns caused by PV output unpredictability and intermittency.
This paper proposes an ultra-short-term hybrid photovoltaic
power forecasting method based on a dendritic neural model
(DNM) in this paper. This model is trained using improved
biogeography-based optimization (IBBO), a technique that incor-
porates a domestication operation to increase the performance
of classical biogeography-based optimization (BBO). To be more
precise, a similar day selection (SDS) technique is presented
for selecting the training set, and wavelet packet transform
(WPT) is used to divide the input data into many components.
IBBO is then used to train DNM weights and thresholds for
each component prediction. Finally, each component’s prediction
results are stacked and reassembled. The suggested hybrid
model is used to forecast PV power under various weather
conditions using data from the Desert Knowledge Australia Solar
Centre (DKASC) in Alice Springs. Simulation results indicate
the proposed hybrid SDS and WPT-IBBO-DNM model has the
lowest error of any of the benchmark models and hence has the
potential to considerably enhance the accuracy of solar power
forecasting (PVPF).

Index Terms—Dendritic neural model, improved
biogeography-based optimization, photovoltaic power forecasting,
similar day selection, wavelet packet transform.

I. INTRODUCTION

TILIZATION of electrical energy has aided in the evo-
lution of human civilization [1], and industrial activity
and daily life cannot function without it. Photovoltaic energy
is a frequently used renewable energy source in the power
business [2]. Photovoltaic energy generation, on the other
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hand, is uncertain [3] and cannot be directly connected to the
grid. Thus, precisely forecasting ultra-short-term photovoltaic
power generation is critical for ensuring steady grid operation
following photovoltaic grid connection.

PV power forecast methods can be based on physical or
statistical models, the latter of which can be linear or nonlinear
in nature [4]. The nonlinear technique, which employs a
variety of machine learning algorithms, is frequently used in
PV forecasting. Artificial Neural Networks (ANNs) such as
Muti-layer Perception (MLP) [5] were used in the early stages
of machine learning research for PV forecasting, Support
Vector Machine (SVM) [6] and Extreme Learning Machine
(ELM) [7] were common. Later, the emphasis has shifted to
incorporate algorithms based on deep neural networks, such
as Convolutional Neural Network (CNN) [8] and Long Short-
term Memory (LSTM) network [9]. However, development
of PV prediction models is constrained not just by machine
learning model development, but also by model parameter
tweaking and data pre-treatment. Currently, a great number of
publications [10]-[13] have addressed the topic of parameter
tuning by utilizing various optimization algorithms and en-
hanced versions. Additionally, the performance of photovoltaic
energy prediction models is highly dependent on data pre-
processing [14]. Numerous data pre-processing techniques
exist, for example, Similar Days Analysis [15], Wavelet Trans-
form (WT) [16], Empirical Mode Decomposition [17], etc.
Almost all solar forecasting models currently available are
hybrid models that incorporate data processing, optimization
algorithms, and superior forecasting models [18].

Although deep neural networks are capable of processing
large amounts of data and mapping complicated nonlinear
relationships, ANNSs is still the norm in predicting a single
photovoltaic power plant. DNM is a unique single neural
network model that exploits the neural dendritic structure’s
nonlinear processing capabilities to tackle issues such as
classification, XOR [19], [20], and so on. Unlike conventional
ANN:g, this is a true single neuron model capable of nonlinear
processing. At the moment, DNM is widely utilized to solve
a variety of time series prediction issues, including financial
time series predictions [21], crude oil price forecasting [22],
very short-term photovoltaic power prediction [23], and wind
speed forecasting [24]. While both DNM and traditional ANNs
share a fundamental physical structure, DNM requires fewer
manual parameters to be set, has a faster convergence rate, and
has greater fitting capabilities [25]. However, the typical DNM
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based on the BP method has certain drawbacks, including
easy-to-fall-into local minima and a greater sensitivity to
the initial value [26], [27]. To address this issue, numerous
publications [28]-[30] attempt to train DNM using an efficient
evolutionary approach to tackle practical engineering issues.
BBO is considered a viable tool for preparing DNM for
practical work [30]. As a result, this paper examines the
application of an enhanced BBO optimization algorithm to
train DNM for ultra-short-term photovoltaic forecasting. The
IBBO method considers a domestication operation [31] that
does not modify the migration and mutation operations of the
original BBO algorithm, but works only when the fitness value
of BBO remains constant throughout iterations.

On one hand, Zhou et al. [7] developed a similar day tech-
nique for screening similar days training sets for PVPF using
five meteorological variables as characteristics. However, it
does not use correlation analysis to discover meteorological
elements, which is critical for PVPF, according to [4]. Addi-
tionally, Li er al. [32] demonstrated that photovoltaic power
production is not always comparable across two days with
identical meteorological circumstances. This study presents
a SDS for accurately simplifying the training set using the
European formula in conjunction with expected radiation and
historical power data. On the other hand, WT is frequently
used to do efficient data preparation in order to increase
prediction accuracy [4], [16], [26]. Zhang et al. [16] created
a PVPF model that combined WT and DNM, confirming that
WT increased forecast accuracy marginally in the presence of
significant weather fluctuations. However, when solar power
and meteorological data contain a greater proportion of high-
frequency signals, the decomposition impact of WPT is en-
hanced [33]. As a result, WPT is utilized to decompose the
input variables’ time series, resulting in more predictable input
data. In terms of experimental development, Leva et al. [34]
developed a physical hybrid ANN approach for forecasting
photovoltaic power over a range of time horizons and resolu-
tions. It is based on publicly available data sets and provides
high-precision forecasting results under a variety of weather
circumstances. It does, however, present only one day example
for each weather condition, similar to [11]. Such experiments
are insufficient. We compare the hybrid SDS and WPT-IBBO-
DNM prediction model to other benchmark models in this
paper and present the results of multiple day’s cases under
various weather conditions.

The primary contributions of this paper are as follows: 1)
Data pre-processing: A SDS approach is developed and then
used with WPT to select and deconstruct input data. 2) Pre-
diction model: A dendritic network model is utilized to solve
the inadequacies of typical ANNs PV prediction models by
utilizing dendritic structure to regulate nonlinear problems. 3)
The proposed ultra-short-term hybrid photovoltaic prediction
model: The SDS and WPT-IBBO-DNM forecast model, is the
first to predict real solar station data using a single dendritic
neuron model trained using an effective optimization approach.

The remainder of the paper is organized as follows: Section
IT delves deeply into data pre-processing techniques such
as SDS and WPT. Section III describes the DNM model’s
structure, the IBBO algorithm, and the IBBO-DNM implemen-

tation. Section IV describes the specific prediction process,
experimental data, assessment measures, parameters setting,
simulation results, and study of computational complexity,
as well as the discussion that follows. Finally, Section V
highlights the key findings of this paper and discusses future
work.

II. DATA PREPARATION

While model selection is critical for PV prediction, data
pre-processing and correlation analysis of input and output
data are also critical. A good pre-processing strategy reduces
not just computational complexity, but also prediction error.
This article makes extensive use of the following two data
preparation techniques: 1) To accurately simplify training
samples, a new comparable day choosing method is applied;
2) The data are decomposed using WPT, which is capable of
completely decomposing the photovoltaic variable.

A. Similar Day Selection and Input Selection

While similar day selection is a standard strategy for se-
lecting training sets in photovoltaic prediction, older methods
rely heavily on meteorological data such as temperature to
find comparable days. Indeed, when power generation is
comparable over a two-day period, their temperatures may
not be too close [32]. As a result, this paper proposes a new
selection strategy based on the Euclidean distance formula. To
begin, (1) calculates the historical day with the most similar
radiation to the projected day, and then these historical power
data that are comparable to the most similar day’s power data,
are further calculated using the same formula and screened as
the training set. The Euclidean distance formula is as follows:

> (@i —yi)? (1)

i=1

where z; is the power data or radiation data of the history
day, and y; represents the power data or radiation data of the
predicted day. n denotes the number of power points in a day.

The Pearson correlation coefficient (PCC) value for each
variable with PV power in the data used in this analysis is
shown in Table I. The closer the PCC value is to 1, the more
strongly correlated the two variables are. It’s self-evident that
global horizontal radiation (GHR) and diffuse horizontal radia-
tion (DHR) are both critical variables. Although the PCC value
for temperature is not very high in this table, temperature is not
negligible. As a result, the input variables selected were global
horizontal radiation, diffuse horizontal radiation, temperature,
and photovoltaic power. PCC value was calculated using the
Pearson correlation coefficient formula [7]:

TABLE I
THE PCC VALUE OF EACH VARIABLE WITH PV POWER

Variable Value Variable Value
Temperature  0.155 DHR 0.587
Humidity —0.133  Wind direction —0.216
GHR 0.984 — -
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where PCC'is the final value, X and Y signify two distinct
variables. In this case, X is fixed as the photovoltaic power,
while Y is one of the other variables. X; and Y; denote the

i-th sample value of the corresponding variable, respectively.
N is the number of samples of the variable.

PCC =

2

B. Wavelet Packet Transform of Input Data

Because WPT is extremely competent at performing time-
frequency analysis on signals in engineering applications [26],
this work uses it to pre-decompose time series of input vari-
ables (photovoltaic power and meteorological data). Not only
can WPT decompose the signal’s low frequency component,
but it can also further decompose the signal’s high frequency
component. However, because WT can examine just the low
frequency component of the signal, the decomposition effect
is less than that of WPT when the signal is decomposed
into several high frequency signals [33]. When the weather is
highly variable, both photovoltaic power and meteorological
data contain a large number of high-frequency components.

After the suggested SDS selects the training set, WPT
decomposes the time series of each input variable individually.
The WPT with three-layer decomposition may theoretically
approximate any nonlinear function, allowing for the solution
of practical engineering issues [35]. As a result, this paper
employs a three-layer WPT to decompose data. The specific
three-layer decomposition process is shown in Fig. 1. W5 ; and
W1 2 denote the first layer decomposed results, and W3 ;-3 g
are the three-layer decompositions. The wavelet basis function
is based on the discrete Meyer wavelet and has been shown
to be effective in photovoltaic prediction [35]. Due to the fact
that it differs in Fourier space by a small carrier, it has a
reasonably excellent localization in coordinate space [36].
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Fig. 1. The three-layer decomposition process of WPT.
III. THE IBBO-DNM PREDICTION MODEL
A. The Dendritic Neural Model

DNM’s topological architecture is distinct from that of other
neural networks such as MLP and RBFNN (Radial Basis

Function Neural Network). Indeed, MLP achieves nonlinear
computation by focusing exclusively on signal propagation
between neurons. DNM, on the other hand, is a single neuron
model that makes use of the dendritic architecture of neurons
to do nonlinear computation. DNM has a faster convergence
rate and a higher fitting accuracy than MLP as a result of this
unique structure [23], [24].

As shown in Fig. 2, DNM contains four layers: synaptic
layer, branch layer, membrane layer, and soma layer [19].
The signal inputs X;-X, are first processed through the
synaptic layer of each branch for nonlinear calculation, and
then summed by each branch to the membrane layer for
calculation of output. After membrane layer processing, the
signal is transmitted to the soma layer.

Synaptic Membrane
X X, X, X,
Branchi ‘l /_L‘ i
Bl
BZ
D D U
o www
v
Soma

Fig. 2. Structure of the dendritic neural model.

The synaptic layer acts as a kind of gatekeeper for neuronal
communication. Each branch’s synaptic layer processes the
input signals using the sigmoid function. They are then written
to the branch layer. The synaptic layer of the i-th input on the
7-th branch performs the following processing function [30]:

1
Y = 1 + e—k(wijri—0ij)

3)

where k is a positive number, defined by the user. w;; and 6;;
are the parameters of the i-th input synaptic layer on the j-th
branch, determined by the training of the learning algorithm.
x; is the input of the ¢-th synapse in the range [0, 1].

The branch layer connects the nodes of the synaptic layer
and amplifies the synaptic layer signals. Equation (4) describes
the multiply operation in the j-th branch [30]:

Z;=11Y @)
i=1

where Z; denotes the output of the j-th branch, n is the
number of input variables.

The membrane layer connects all the branch layers and sums
signals to the soma layer. Here is equation [30]:

M
V=> 2 (5)
j=1

where V' is the output of the membrane layer, and M is the
number of branches.
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The results of the membrane layer are conveyed to the soma
layer. If they are above a certain threshold, the neuron is
activated. Additionally, the sigmoid function is applied to the
soma layer, which is expressed in (6) [30]:

_ 1
- 1 + e_k’s(v_es)

(6)

where k is a user-defined parameter, 6, represents the thresh-
old and O is the final output of the model.

B. Biogeography-based Optimization

Traditional DNM typically adopts a BP learning algorithm
to train its weights and thresholds, but BP algorithm has
disadvantages such as easy to be affected by initial value and
too slow convergence speed [30]. In order to achieve a better
solution to complex problems, such as the photovoltaic power
prediction in this paper, it is important to use an efficient
and rapid learning algorithm to train DNM. Therefore, this
paper adopts IBBO as the learning algorithm for the DNM.
BBO simulates migration and drifting of natural species in
different geographical regions, so it mainly has two operations:
migration and mutation.

The BBO algorithm determines the solution to the problem,
referred to as the habitat, based on the habitat suitability index
(HSI), and the variable affecting the HSI is referred to as the
suitability index variable (SIV) [37]. The migration operation
is a critical step in integrating information exchange between
habitats and preserving the best SIV in the majority of habitats.
Assuming that each solution’s migration model is consistent,
the migration formulas are as in (7) and (8):

Ao=1T (1 _ g) 7
pi=E (g) ®)

where \; and p; are the current immigration rate and emigra-
tion rate respectively, I and F are the maximum immigration
rate and emigration rate respectively, n is the current popula-
tion quantity, and @) is the maximum population quantity.
Mutation operations alter a range of ecosystems in order
to boost species diversity. This mutation technique enables
habitats with a low HSI to improve more quickly, while
habitats with a high HSI to continue to improve [37]. Even
though mutation impairs its HSI, the retained excellent habitats
can be protected by an elite approach. The mutation rate mi
related to population size can be formulated as follows:

Di ) 9)
pmax
where M.« 1S the maximum mutation rate defined by the

user, and P, is the maximum value of individual count
probability P; (i =1,2,---,Q).

C. Improved Biogeography-based Optimization

m; = Mmax (1 -

The IBBO includes one more domestication operation com-
pared to normal BBO. An artificial domestication operation is
used to expedite the evolution of a species in a certain direction
by human intervention. Domestication occurs independently

of migration and mutation operations and has no effect on the
BBO algorithm’s search capability. It becomes effective only
when the HSI is at a standstill. Equation (10) describes the
process [31]:

X;(j)—1, -1<c<—-05
Xi(j+1) =14 X;(5), —05<c<05 (10)
Xi(j)+1, 05<c<1

where X;(j) is the optimal solution of the population in the
j-th iteration, X;(j 4+ 1) is the solution after domestication,
and will replace the solution with the low HSI to participate
in the subsequent iteration process. ¢ is a random variable
with uniform distribution in the interval [—1, 1]. Equation
(10) implements the nearest rounding through classification
discussion. This process simulates a continuous excitation,
which randomly selects individuals in the optimal solution to
be slightly perturbed. Although the domestication has slight
modification to the BBO algorithm itself, the effect is apparent
to the algorithms’ results.

The following are the steps involved in IBBO training
DNM:

1) Initialize IBBO parameters, such as population popsize,
iteration number maxgen, and mutation rate m,ax.

2) Initialize a collection of randomly generated vector
solutions, specifically the habitats in IBBO.

3) Calculate and sort the HSI values, which are equivalent
to the mean square error (MSE). The calculation formula is
as follows:

N

1 2
HSI = MSE = W,;(Ti_@) (11)

where IV denotes the number of samples, T; and O; represent
the target vector and the actual vector of the i-th sample,
respectively.

4) Calculate the immigration and emigration rates using
(7) and (8), and then carry out the migration and mutation
operations according to the probability distribution.

5) Determine whether the convergence process is taking too
long. If it is slow, select the optimal domestication solution
mentioned before. Otherwise, determine whether the termina-
tion condition is satisfied. Otherwise, return to 3).

IV. CASE STUDIES
A. The Specific Prediction Process of the Proposed Model

As mentioned previously, the proposed hybrid SDS and
WPT-IBBO-DNM forecasting model is composed primarily of
two components: data processing and model prediction. To be-
gin, the proposed SDS is used to select a training set with high
quality and an appropriate data size. Next, the input variables’
corresponding time series signals are decomposed using three-
layer WPT, and the component signals corresponding to each
variable are jointly input into the well-trained IBBO-DNM
prediction model. Finally, each component’s prediction results
are stacked and reassembled. The proposed hybrid model’s
prediction flow chart is depicted in Fig. 3.
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Fig. 3.

B. Overview of Experimental Data

To validate the proposed hybrid prediction model’s perfor-
mance, a series of tests are conducted using data from the
DKASC, Alice Springs photovoltaic system [38]. Table II
contains pertinent site information. This article makes use
of data spanning the period September 1, 2018 to August
30, 2019, including historical data on electricity generation,
temperature, global horizontal radiation, and diffuse horizontal
radiation. Among them, data utilized for training, validation,
and testing make up 70%, 15%, and 15%, respectively. Due
to the limited duration of sunshine, a total of 46 data points
from 7:00 to 18:15 in a day were chosen as forecast sample
points. The resolution of the data is 15 minutes.

TABLE II
RELEVANT SITE INFORMATION

System specification Valve

Array Rating 5.04 kW

Panel Rating 280 W

Number of Panels 18

Panel Type Sungrid SG-280P6
Array Area 35.12 m?

6 kW, SMA SMC 6000 A
Mon, 15 Mar 2010
Tilt = 20, Azi = 0 (Solar North)

Inverter Size/Type
Installation Completed
Array Tilt/Azimuth

C. Evaluation Metrics

To evaluate the performance of the proposed hybrid predic-
tion model, four evaluation metrics are used to analyze and
compare the prediction effects. They are the root mean square
error (RMSE), the mean absolute error (MAE), the mean
absolute percent error (MAPE), and the correlation coefficient

(R?), respectively. They can be expressed as follows [7], [39]:

1
RMSE = — P;i — P, 12
s N;( 7= Pai) (12)
1 N
MAE = — Ps, — P, ; 13
NZ;I i = Pl (13)
1 < |Pp;— P
fii a,i
MAPE = — 100 14
N; Pa’i g % ( )
N N N 2
(szf,lpaz_z Pf,zZPa,z)
R2_ 1 i=1 i=1

= [N IZV: P?lzzzv: pf,i)Z] [N Izvj }%’i<i§1 Pa,i)Q}
GE)

where Py ; and P, ; indicate forecasted power value and actual
power value at the i-th time point, respectively. N denotes the
total number of samples taken for each forecast period.

D. Parameters Setting

As mentioned in Section III, the DNM requires the setting
of four user-defined parameters: k, ks, 65 and M. However, in
this paper, k is equal to ks. As a result, three parameters must
be examined in order to optimize the model’s performance.
Because attempting each parameter one by one would take
an inordinate amount of time, this study employs Taguchi’s
approach, which has been widely used for the selection of
DNM’s parameters [25], [30]. Lig (4%) orthogonal arrays of
its core parameters are produced, which include only 16 (out
of 64) experiments. Table III summarizes the MSEs for 16
different parameter combinations of DNM and the proposed
model, where MSE is determined using (11). Each experiment
was repeated twenty times, separately, to obtain an average.
IBBO’s population sizes and iteration times are set to 50 and
1000. To guarantee a fair comparison, all benchmark models
use comparable approaches for determining their primary
parameters, which are reported in Table IV.

TABLE III
MSES FOR 16 DIFFERENT PARAMETER COMBINATIONS OF DNM AND
THE PROPOSED MODEL

No. k=ks 05 M DNM WPT-IBBO-DNM
1 1 2 5 1.31E-03 1.00E-03
2 1 3 10 7.99E-04 3.37E-04
3 1 4 20 7.73E-04 3.28E-04
4 1 5 30 7.18E-04 2.16E-04
5 2 2 10 9.83E-04 3.36E-04
6 2 3 5 5.38E-03 6.97E-04
7 2 4 30 1.08E-03 2.48E-04
8 2 5 20 2.58E-02 4.18E-04
9 3 2 20 1.84E-02 4.57E-04
10 3 3 30 7.78E-03 4.71E-04
11 3 4 5 2.45E-01 9.12E-04
12 3 5 10 2.45E-01 8.81E-04
13 4 2 30 1.47E-02 6.48E-04
14 4 3 20 2.45E-01 4.50E-04
15 4 4 10 2.45E-01 1.72E-03
16 4 5 5 2.45E-01 4.12E-02

Note: The bold values indicate the minimum MSEs for 16 parameter combi-
nations.
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TABLE IV
PARAMETERS SETTING OF EACH MODEL

Model Value

WPT-IBBO-DNM/ k=ks=1,0,=5 M =30
IBBO-DNM

DNM k=ks=1,0,=5 M =130,n=0.7

and maxgen = 1000

M = (10, 5), n = 0.1 and maxgen =
1000

M = 10, n = 0.01 and maxgen = 1000

Deep Belief Network (DBN)

Elman neural network
(ELMAN)

General Regression Neural
Network (GRNN)

MLP M = 10, n = 0.001 and maxgen = 1000

where 7 denotes learning rate, maxgen is iteration times, and M of the other
models represents the number of hidden layer neurons. It is worth noting that
DBN has two hidden layers, so it has two values of M.

n =203

E. Simulation Results

In this paper, thorough experiments were undertaken to
establish the superiority of the hybrid SDS and WPT-IBBO-
DNM prediction model. These prediction tests are imple-
mented on a personal computer with Intel Core i5-6200 and
RAM 8.00 GB using MATLAB 2018b. These experiments
generally consist of three simulation parts:

1) WPT’s Superior Data Decomposition Ability

To demonstrate this, WT-DNM is introduced as a com-
parison model for WPT-DNM. The results of DNM, WT-
DNM, and WPT-DNM prediction under two different weather
situations are shown in Table V. Day 1 is a sunny day
with low variation in photovoltaic power picked at random
from validation data, whereas Day 2 is a cloudy day with
significant variation in photovoltaic power selected at random.
The two-day test results were chosen to demonstrate the
WPT’s usefulness in photovoltaic forecast. In this simulation
part, WT employs a three-level decomposition technique,
whereas WPT employs a two-layer decomposition technique
to ensure the number of prediction components is consistent.
This contrasts with the suggested three-layer WPT-IBBO-
DNM model. It is not difficult to notice from the two-day test
that WPT-DNM performs somewhat better than WT-DNM on
all four evaluation indices, and both WPT-DNM and WT-DNM
perform better than DNM on all four evaluation indexes. This
demonstrates that both WPT and WT may enhance prediction
outcomes, but WPT’s improvement is slightly more than
WT’s. Additionally, the anticipated performance improvement

TABLE V
COMPARISON OF WT AND WPT’S PERFORMANCE

Model Criteria Dayl Day?2
DNM RMSE (kW)  0.1706  0.2094
MAE (kW) 0.1512  0.1853
MAPE (%) 0.0451  0.0733
R? 0.9950  0.9963
WT-DNM RMSE (kW)  0.1293  0.1738
MAE (kW) 0.1123  0.1568
MAPE (%) 0.0340  0.0569
R? 0.9965  0.9962
WPT-DNM  RMSE (kW)  0.1273  0.1667
MAE (kW) 0.1042  0.1462
MAPE (%) 0.0274  0.0589
R? 0.9953  0.9972

of WPT-DNM on Day 2 was greater than the predicted
performance improvement on Day 1. Specifically, the RMSE
of WPT-DNM on Dayl is 0.1273, which is 1.5% lower than
the RMSE of WT-DNM. However, on Day 2, WPT-DNM
reduced by 4.1% when compared to WT-DNM with the same
RMSE value. This demonstrates the importance of using WPT
to decompose the model’s input data, particularly in the case
of extreme weather fluctuations.
2) IBBO'’s Efficiency in DNM Model Training

To demonstrate the great efficiency and precision of IBBO,
the following algorithms are compared: BBO, Genetic Al-
gorithm (GA), Ant Colony Optimization (ACO), Evolution-
ary Strategies (ES), Population-Based Incremental Learning
(PBIL), and Particle Swarm Optimization (PSO). Fig. 4 depicts
the convergence curve for seven algorithms training DNM in
PV validation data. MSE is determined using (11) as described
in Section III. The parameter values and brief descriptions
for each algorithm are listed in Table VI [30], although in
this simulation section, population sizes and iteration times
are set to 50 and 300, respectively, rather than 50 and 1000.
Clearly, the MSE value of IBBO-DNM decreases the fastest
and is closest to the ideal solution in the various models
during the iteration. Although GA’s MSE is tiny during the
first 150 iterations, IBBO-DNM’s convergence outcome is
superior to that of BBO and GA thereafter until the end of
the iteration. This indicates that IBBO is a capable and rapid
training algorithm for DNM, at least when compared to the
other algorithms.

107!

1072

MSE of the validation data

1073}

150 200 250 300
Iteration times

50 100

Fig. 4. Comparison of seven algorithm training DNM.

3) The Superiority of the Proposed Hybrid Prediction Model

To demonstrate the suggested model’s superiority, this sim-
ulation section conducts a series of comparative experiments
with numerous advanced models, including MLP, GRNN,
ELMAN, DBN, DNM, and IBBO-DNM. The results of the
proposed hybrid WPT-IBBO-DNM model’s PV power predic-
tion in four distinct weather conditions are displayed in Fig. 5.
Clearly, the suggested model’s predicted PV power curve is
the most similar to the actual PV power curve among four
models, regardless of the weather situation. Even when PV
power fluctuates significantly (as when it is gloomy or wet),
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TABLE VI
EACH ALGORITHM’S SPECIFIC PARAMETER VALUES AND A BRIEF DESCRIPTION [30]

Algorithm Brief introduction Parameter Value
BBO/IBBO  Details show in Section III. Habitat modification probability 1
Immigration probability bounds per gene [0, 1]
Step size for numerical integration of probability 1
Max immigration and max emigration 1
Mutation probability 0.005
PSO PSO mimics the search behavior of a bird Topology Fully connected
swarm. Cognitive constant 1
Social constant 1
Inertia constant 0.3
GA GA is simulation of natural selection. Type Real coded
Selection Roulette wheel
Crossover Single point (probability = 1)
Mutation Uniform (probability = 0.01)
ACO ACO emulates the foraging behavior of ants to  Initial pheromone le-6
search the shortest route between a food Pheromone update constant 20
source and their nest. Pheromone constant 1
Global pheromone decay rate 0.9
Local pheromone decay rate 0.5
Pheromone sensitivity 1
Visibility sensitivity 5
ES ES is inspired by the concept of the evolution. =~ Number of offspring 10
Standard deviation 1
PBIL PBIL is a generalization of a univariate Learning rate 0.05
marginal distribution algorithm. Good population member 1
Bad population member 0
Elitism parameter 1
Mutation probability 0.1

the model’s forecast results remain satisfactory. Notably, all
models provide rather accurate forecasts on sunny days. How-
ever, as weather conditions change, particularly on overcast
and wet days, the suggested model’s prediction curve remains
close to the real power, in contrast to the other models.

In order to further compare the prediction performance of
the proposed model with other models, the RMSE, MAE,
MAPE and R? values of 7 models are shown in Table VIL
It demonstrates the suggested hybrid model outperforms the
other benchmark models, achieving the lowest average RMSE
= 0.0693 kW, MAE = 0.0548 kW, MAPE = 3.2444%, and
the highest average R? = 0.9947%. The MAPE value of the
suggested model is significantly lower than of other models,
particularly on wet days. In all weather scenarios, IBBO-
DNM model values are slightly less than DNM values. For
example, when compared to the average RMSE of the DNM
model, the IBBO-DNM model’s RMSE is lowered by around
11.7%. It reveals that IBBO is capable of fully utilizing DNM,
but typical BP training drastically inhibits its performance.
DBN also outperforms DNM in terms of prediction accuracy
because of its deep neural network topology, however it is still
somewhat worse than IBBO-DNM. DNM’s average MAE is
8.7% greater than DBN’s, but IBBO DNM’s average MAPE is
4.5% lower than DBN’s. However, DNM clearly outperforms
MLP, GRNN and ELMAN when it comes to simple neural
network models.

Figure 6 provides a logical explanation for the RMSE,
MAE, and MAPE results for the seven forecast models un-
der various weather conditions. That Figure is self-evident.
Fig. 6(a) and Fig. 6(b) have a nearly same change in that all
models have the highest error value on cloudy days, implying

that forecast accuracy is lowest on cloudy days. However,
on rainy days, the RMSE and MAE values are considerably
lower than on sunny days, because the maximum power value
on sunny days is significantly greater than on rainy days.
Fig. 6(c) confirms this (Fig. 6(c) has changed the order of
x-axis). Sunny days have the lowest MAPE, which means
they have the best prediction impact. It is worth mentioning
the suggested model’s MAPE improves significantly on rainy
days, indicating the model’s superiority on rainy days. More-
over, the proposed model has the least variation range across
all the models under various weather situations, indicating
the proposed model has some stability. Additionally, Fig. 7
depicts the histogram of the 14 test days’ error distribution
for all sorts of weather in this simulation part. Following
calculation, roughly 85% of the error is contained within the
range [—0.1, 0.1].

F. Computational Complexity Analysis

The suggested model is primarily composed of DNM, and
the computational complexity of IBBO must be addressed.
To begin, the computational complexity of the DNM neural
network model can be equated to the number of training
parameters [25]. Specifically, DNM has 2 x [ x M parameters,
where [ is the feature number and M represents the number
of dendritic branches. So DNM’s complexity is O(I * M?).
Similarly, for IBBO, its computation complexity can be ex-
pressed as O(E « N 2), where E denotes iteration times and
N is population size. Table VIII summarizes the time required
for each model to forecast 46 points in a single day. As a
result, the proposed model has the longest run time of all of the
models in Table VIII. However, given the increasing popularity
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Fig. 5. Prediction results of 7 models in different weather.

of high-performance cloud servers and GPUs, the proposed
model retains a high degree of practical utility. Furthermore, as
illustrated in Fig 8, the suggested model achieved the ultimate
MSE value for MLP and DNM in fewer than 100 iterations,
implying that it may not require as much running time in
practice.

G. Discussion

In a nutshell, the hybrid SDS and WPT-IBBO-DNM model
outperforms the other models in all four weather conditions
evaluated in this work, demonstrating the suggested model
is a powerful PV power forecasting model. In terms of data
processing, WPT was used to address the fault of WT in that
it could not further breakdown high-frequency components,
and the experiment confirmed that its decomposition capacity
improved prediction accuracy. In terms of prediction models,
while both DNM and MLP use the BP algorithm for training,
DNM has a higher prediction efficiency. This demonstrates the
strength of the DNM network structure. MLP contains a large
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number of parameters that must be set manually, and there
is no efficient way to do it. While DNM can address some
of MLP’s faults, it also suffers from inadequacy of the BP
method. BBO is a highly effective DNM training technique
that has been proved in [30]. As a result, an enhanced BBO
that takes domestication into account is utilized to train DNM
in this paper, and trials demonstrate its performance when
compared to many other methods.

V. CONCLUSION

The hybrid SDS and WPT-IBBO-DNM forecast models are
proposed in this research as a unique model for ultra-short-
term hybrid photovoltaic forecasting. This paper’s primary
objective is as follows: 1) A SDS approach is developed
that incorporates the European formula, anticipated radiation,
and historical power data in order to address the issue of
previous SDS screening training sets being inaccurate; 2) WPT
is used to breakdown input data in order to get greater forecast
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TABLE VII
EVALUATION METRICS OF 7 MODELS IN DIFFERENT WEATHER

Method Criteria Sunny Cloudy Overcast Rainy  Average
MLP RMSE (kW) 0.1771 02169 0.1870 0.1112 0.1731 s
MAE (kW) 0.1524 0.1669 0.1471 0.0934 0.1400
MAPE (%) 4.1952 6.2197 7.9010 13.2378 7.8884 ~
R? 0.9918 0.9871 009822 0.9673 0.9821 S 10
GRNN RMSE (kW) 0.1468 0.2070 0.1071  0.0952 0.1390 >
MAE (kW) 0.1273 0.1599 0.0855 0.0744 0.1118 §
MAPE (%) 3.5744 55058 42104 12.2097 6.3751
R2? 0.9951 0.9877 0.9922 0.9505 0.9814
ELMAN RMSE (kW) 0.0945 0.1208 0.0887  0.0962 0.1001 MLP
MAE (kW) 0.0766 0.0925 0.0687 0.0769 0.0787 Sunny GRNN
MAPE (%) 24535 34788 4.0590 14.0752 6.0166 Cloudy ppN TEMAN
R2? 0.9977 0.9966 0.9950 0.9392 0.9821 Overcast -
DBN RMSE (kW) 0.0806 0.1056 0.0789  0.0957 0.0902 Rainy IBBO-DNM
MAE (kW) 0.0645 0.0865 0.0635 0.0804 0.0737 WPT-IBBO-DNM
MAPE (%) 1.9398 32114 3.6820 11.0623 4.9739
R2 0.9983 0.9972 09966 0.9517 0.9860 (c) MAPE
DNM RMSE (kW) 0.0793 0.1088 0.1041  0.1038  0.0990

MAE (kW) 00667 00868 00815 00853 00801 Fig. 6. RMSE, MAE, MAPE values of 7 models under different weather.

MAPE (%) 2.0642 3.0713 3.8918  12.2873 5.3287

R2 0.9986 0.9961 0.9932 09370 0.9812 140 ‘
IBBO-DNM RMSE (kW) 0.0769 0.1033 0.0876  0.0817 0.0874 126
MAE (kW) 0.0623 0.0804 0.0696 0.0672 0.0699 120
MAPE (%) 1.8512 2.8983 3.4379  10.8082 4.7489
R? 0.9983 09973 0.9952 0.9566 0.9869
WPT-IBBO- 100
DNM RMSE (kW) 0.0700 0.0924 0.0675 0.0471 0.0693

MAE (kW) 0.0548 0.0755 0.0529 0.0361 0.0548
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precision. This addresses the disadvantage of WT in that
it cannot further decompose high-frequency components of
photovoltaic power; 3) Due to the excellent efficacy of BBO in
training, BBO integrated with domestication operation (IBBO)
is used to train DNM and then used to real PV station data
prediction.

To be more precise, we use SDS to pick the training set and
WPT to deconstruct the input data into various components.
Following that, IBBO develops DNM weights and thresholds.
Following that, each component is mapped to the input of
the trained IBBO-DNM, and projected outcomes are superim-
posed and recreated. Finally, WPT-IBBO-DNM was evaluated
in a variety of weather conditions and the outcomes were
compared to MLP, DNM, and WPT-DNM. Results indicate the
suggested hybrid forecast model has the best RMSE, MAE,
MAPE, and R? values. As a result, it is stated the proposed
SDS and WPT-IBBO-DNM-based prediction model has the
potential to increase accuracy of PV power forecasting, hence
contributing to optimization of real-time power dispatch and
grid stability.

The future research direction will be on how to efficiently
train DNM with optimization algorithms for application to
more difficult multi-dimensional time series prediction prob-
lems, as well as how to efficiently and accurately pick user-
defined parameters for DNM. Indeed, this article is the first
to forecast multi-variable dimensional time series using DNM,
which is distinct from earlier DNM studies. This is the model’s
restriction. To achieve reliable prediction of multi-variable
photovoltaic time series, we increase the number of dendritic
branches in DNM and employ an optimization approach. Both
of these factors contribute to the model’s increased running
duration.
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