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Automated Two-stage Conversion of Hourly
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Abstract—Conversion of hourly dispatch cases derived using
DC optimal power flow (DCOPF) to AC power flow (ACPF)
case is often challenging and requires arduous human analysis
and intervention. This paper proposes an automated two-stage
approach to solve ACPF formulated from DCOPF dispatch cases.
The first stage involved the use of the conventional Newton
Raphson method to solve the ACPF from flat start, then ACPF
cases that are unsolvable in the first stage are subjected to a hot-
starting incremental method, based on homotopy continuation,
in the second stage. Critical tasks such as the addition of reactive
power compensation and tuning of voltage setpoints that typically
require human intervention were automated using a criteria-
based selection method and optimal power flow respectively. Two
datasets with hourly dispatches for the 243-bus reduced WECC
system were used to test the proposed method. The algorithm was
able to convert 100% of the first set of dispatch cases to solved
ACPF cases. In the second dataset with suspect dispatch cases to
represent an extreme conversion scenario, the algorithm created
solved ACPF cases that satisfied a defined success criterion for
77.8% of the dispatch cases. The average run time for the hot-
starting algorithm to create a solved ACPF case for a dispatch
was less than 1 minute for the reduced WECC system.

Index Terms—AC power flow, DC power flow, hot-starting
algorithm, homotopy continuation, power flow convergence,
reactive power compensation, voltage setpoint tuning.

I. INTRODUCTION

W ITH the growing penetration of variable renewable
energy generators in power grids, system planners are

increasingly interested in performing stability assessments of
the grid under numerous future scenarios [1], [2]. Snapshots of
the power grid under these future scenarios are often required
for these studies. The creation of these snapshots usually
involves production cost modeling (PCM) which considers
forecasted load, generator production costs and constraints,
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fuel costs, transmission constraints, emission constraints, and
even market competition, to provide the security-constrained
economic dispatch of grid generators to meet loading. Ideally,
PCM will use full AC optimal power flow (ACOPF) as the
basis to combine market and physics parameters in its calcula-
tions. However, ACOPF solution is extremely computationally
expensive for practical power systems due to nonconvexities
and multipart nonlinear pricing [3]. Therefore, the more robust
and faster DC optimal power flow (DCOPF) is widely used
to calculate the least-cost hourly or sub-hourly generation
dispatch in response to forecasted load demand. DCOPF is
not to be confused as a power flow solution for a direct
current network, rather, it is a version of ACOPF simplified
by assuming that voltage magnitudes are fixed, voltage angles
are close to zero, and in many cases, transmission losses are
negligible [3]. Since DCOPF is based on DC power flow
(DCPF), the created dispatch cases only include active power
generation and load demand usually without consideration
for system parameters like line losses, reactive power flow,
and bus voltage profiles. These system parameters are vital
to performing stability studies e.g., voltage stability studies.
Thus, the conversion of the DCOPF dispatch case to a full AC
power flow (ACPF) case is often required for further stability
studies.

Traditionally, only a few snapshot dispatch cases are con-
verted to ACPF e.g., summer peak case and spring light case.
However, these snapshot cases are becoming insufficient to
inform grid planners in the modern power systems due to in-
crease in sub-hourly transactions among balancing authorities
and higher penetration of intermittent renewable generation.
It is therefore increasingly necessary to convert many hourly
(or sub-hourly) dispatch cases to equivalent ACPF cases. This
conversion process can be challenging, being described as
‘maddening difficult’ in [3], especially because DCOPF dis-
patch solutions are hardly ever AC-feasible [4]. The conversion
often requires heuristic parameter tuning and manual voltage
support addition to make the DCOPF dispatch cases solvable
in ACPF. But such manual conversion is impractical for a large
number of dispatch cases, e.g., for all 8,760 hours in a year,
especially for systems with hundreds or thousands of buses [5].
It is therefore surprising that no commercial software vendor
is offering a tool to automate this conversion process. Hence,
this paper presents a two-stage process to serve as a blueprint
for the automated conversion of a large number of dispatch
cases to solved ACPF cases.

Equations (1) and (2) represent the ACPF mathematical
formulation.
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ADEMOLA et al.: AUTOMATED TWO-STAGE CONVERSION OF HOURLY OPTIMAL DC FLOW SOLUTION TO AC POWER FLOW 29

P inj
i = Vi

Nbus∑
j=1

Vj (gij cos (θi − θj) + bij sin (θi − θj)) (1)

Qinj
i = Vi

Nbus∑
j=1

Vj (gij sin (θi − θj)− bij cos (θi − θj))

i, j = 1, . . . , Nbus (2)

where P inj
i and Qinj

i are active and reactive power injections
at bus i, respectively; V and θ are bus voltage magnitudes
and angles respectively; g and b are branch conductance and
susceptance respectively; Nbus is the number of buses in the
network.

Equations (1) and (2) are usually solved by variations of
the Newton Raphson (N-R) method [4], which may fail to
converge to a solution [5], or may converge to undesirable
low voltage solutions [6]. The N-R method was developed
based on the assumption that higher-order terms of Taylor’s
series expansion of a non-linear function can be neglected.
This is only true if the initial solution guess is sufficiently close
to the final solution and within its domain of attraction [7].
Thus, ACPF solution using the N-R method is notoriously
sensitive to initial voltage guesses and the generic flat-start
guesses (1∠0 p.u. voltage at all buses) have been reported
to rarely work for real systems [8], [9]. To make better-
than-flat-start initial voltage guesses, [10] and [11] proposed
the use of approximate solutions from linearized power flow
models such as DCPF to provide a better starting point for
the N-R method. However, this approach is unsuitable for ill-
conditioned or heavily loaded systems for which linearized
power flow models often provide low accuracy or unreason-
able solutions [12]. Artificial intelligence techniques such as
machine learning and deep learning have also been proposed
to provide initial voltage guesses, but this approach requires
sufficient and representative training data which may not
be readily available [13]–[15]. Ref. [16] and [17] deployed
homotopy continuation to provide good initialization for a
difficult ACPF case by replacing it with a sequence of subcases
where the first subcase is a suitable base case with known
solutions, and the last subcase corresponds to the target ACPF
to be solved. While useful, the choice of a suitable base case
is not trivial and there are no established criteria for its choice.

Even with good initializations, an ACPF at certain operating
points may have no solution [6], [7]. Studies in [18]–[21]
focused on finding the minimum load shedding required to
restore solvability of the power flow. These methods are
unsuitable for ACPF with invariable load dispatch fixed by
external considerations such as load forecast. Reactive power
(MVar) compensation can be used to increase the region
of solvability (RS) of ACPF while maintaining load [22]–
[24]. However, appropriate sizing and location of the MVar
compensation devices can be challenging, especially when
autonomous placements are desired.

The main contribution of this paper is the conversion of
a large number of hourly dispatches from DCOPF to solved
ACPF cases using a hot-starting incremental algorithm. The al-
gorithm combines homotopy continuation and MVar compen-
sation methods to improve the robustness of the N-R method

against bad initializations and expand the RS of ACPF at
difficult operating points respectively. While previous methods
have focused on reducing load to solve the ACPF [21], the
proposed work uses MVar compensation to improve power
transfer capability and expand the RS to solve ACPF without
changing load dispatch. To eliminate human intervention in the
conversion process, fully automatable methods were deployed
to identify appropriate locations to connect MVar compen-
sators and tune the voltage setpoints for regulated buses.

The rest of the paper is organized as follows. Section III
introduces the two stages of the proposed DCPF to ACPF
conversion process. In Section IV, two sets of hourly dispatch
cases for the reduced Western Electricity Coordinating Council
(WECC) system were used to show the performance of
the conversion process. Section V concludes the paper and
highlights potential areas of future research.

II. CONVERSION OF HOURLY DISPATCH CASES FROM
DCOPF TO SOLVED ACPF

The conversion process involves two stages. The first stage
is a simple DC-to-ACPF conversion using the N-R method to
solve created ACPF cases. The voltage magnitudes and angles
are initialized from flat start. The hourly ACPF cases that are
not solvable in the first stage are passed on to the second
stage where the hot-starting incremental algorithm is used to
solve them. An ACPF is considered solved if the largest power
mismatch at any bus is not greater than 0.1 MW (or MVAr) and
voltage at a regulated bus, not at its maximum reactive power
limit, is within ±0.001 p.u. of its voltage setpoint. Fig. 1 is a
block diagram showing the inputs and outputs of each stage of
the conversion process and the following sub-sections explain
each stage.

Reference
ACPF

Stage 1

Set of
dispatch

cases from
DCOPF

Full network

Topology,

Load power

factor, Vsch

Pgen

Pload

Unsolved
ACPFs

Solved
ACPFs
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with voltage

solutions

PloadPgen

Fig. 1. Inputs and outputs of the DCPF to ACPF conversion stages.

A. Stage 1: Simple DC-to-ACPF Conversion

The simple DC-to-ACPF conversion made use of a reference
ACPF case already formulated and solved in PSS/E, with full
network topology information, voltage setpoints for regulated
buses, Vsch, and load power factors. The topology in the
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DCOPF solver should be the same as that of the reference
case. To create an equivalent ACPF for each hourly dispatch
case, the active power generation, Pgen, and the active load
demand, Pload, of the reference ACPF are replaced by the
Pgen and Pload of the hour. Reactive load demand, Qload, is
calculated using the load power factors for each bus in the
reference ACPF. At this stage, the known parameters, Pgen,
Pload, Qload, and Vsch, are sufficient to formulate the power
flow mismatch equations (1) and (2). Thus, the N-R method is
used to calculate the final voltage magnitudes, V , and angles,
δ, at all buses, as well as the reactive power generation, Qgen,
at all generators. Fig. 2 presents the algorithm of the simple
DC-to-ACPF conversion.

Start

Load ACPF
reference case

Replace initial Pgen and Pload

of reference case with hourly

dispatch Pgen and Pload

Extract Pgen and

Pload from DCOPF
hourly dispatch

Calculate Qload at each
bus using load power

factor of reference case

Solve equivalent ACPF
from flat start to obtain

Vmag, Vang and Qgen

End

Fig. 2. Simple DC-to-ACPF conversion algorithm.

B. Stage 2: Hot-starting Incremental Algorithm

This stage involves the deployment of a hot-starting in-
cremental algorithm that borrows the general idea of the
homotopy-continuation method. For this work, the chosen
homotopy parameters are Pgen, Pload, Qgen. Suitable solved
cases from stage 1 are used as starting base cases for the hot-
starting algorithm. To facilitate solution, the algorithm also
incorporates automated MVar compensation using a criteria-
based selection method and tuning of voltage setpoints was
achieved using optimal power flow (OPF). The block diagram
in Fig. 3 presents the workflow of the hot-starting algorithm,
and the following sub-sections delineate each block.
1) Identification of Suitable Starting Base Case

In practice, it was found that hot-starting a solution from a
base case with highly disparate generator dispatch impacts the
chances and speed of getting an ACPF solution at the target
dispatch. If the ACPF cases are available in time sequence,
e.g., for each hour of a year, an obvious solution will be to

Identify suitable ACPF case among pool of
solved cases to use as starting base case

Perform postprocessing; e.g., removal of
excess voltsge support

Step-wisely modify base case dispatch
towards target dispatch while adding voltage
support and tuning voltage setpoints

Fig. 3. Workflow of the developed hot-starting incremental algorithm.

use solved ACPF cases close in time-period to the target ACPF
as a base case. However, this is sub-optimal in the presence
of variable renewable energy generators which sometimes
introduce large differences in dispatch between cases close to
each other in time. Thus, a more systematic approach was
developed to identify the most suitable starting base case
among candidate solved cases using two criteria presented as
follows.

a) Unit Commitment Similarity Score (UCSS): The
UCSS relates the operational generator units in a candidate
solved case to that of the target case to be solved. It is given
as:

UCSSc =

Ngen∑
i=1

ui,t ⊕ ui,c

ui = 1 if Pi > 0

= 0 otherwise (3)

where Ngen is the number of generators; Pi is the active power
of generator i; t indicates target case; c indicates candidate
case; ⊕ is the EX-NOR logic operator.

The candidate case with the highest UCSS is chosen as the
starting base case. When there is a tie, the next criterion is
used.

b) Mean-squared Difference (MSD): To choose among
candidate cases with the same UCSS, the mean squared
difference between the generator dispatch of each candidate
case and the target case is calculated using (4). All variables
are the same as in (3).

MSDc =
1

Ngen

Ngen∑
i=1

(Pi,t − Pi,c)
2 (4)

Among candidate cases with the same UCSS, the one with
the least MSD relative to the target case is chosen as the
starting base case.
2) Stepwise Modification of Base Dispatch Towards Target
Dispatch

After identifying and loading a suitable starting base case,
the hot-starting algorithm adjusts the initial dispatch (i.e.,
Pgen,c, Pload,c, and Qload,c) towards the target dispatch
(i.e., Pgen,t, Pload,t, and Qload,t) to indirectly solve the
target ACPF case. Before the adjustment process, participating
generators in the target ACPF case that are shut down in
the starting base case are turned on. During the dispatch
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adjustment process, the following are the salient decisions the
algorithm is programmed to make.

a) Step Size: The algorithm calculates the appropriate
step size to use for each conversion process. Larger step sizes
from initial dispatch to target dispatch will improve speed
but tend to create unstable or divergent ACPF cases. On the
other hand, smaller step sizes will lead to slower run time.
Thus, a balance between speed and stability was established
by calculating the step sizes as a function of the maximum
difference in generator dispatch between a base case and the
target case, as given below:

si =
Pt,i − Pb,i

f ×max(|Pt,i − Pb,i|)
(5)

where si is the step-size at generator i; Pt,i and Pb,i are
the real power at generator i for target and base case, b,
respectively (excluding slack generators); f is a variable factor.

The addition of the variable, f , in (5) allows the algorithm
to vary the step-size such that initial f (or finit) is small at the
start to make step sizes large when dispatch is still close to
the base case and the ACPF is still more stable. Then, f is
gradually increased by ∆f to lower the step size as dispatch
is brought closer to the target case when the ACPF is usually
more fragile. A maximum f value, fmax, should be set to
signal the smallest step size that the algorithm is allowed to
take before it must stop.

b) Identification of Buses in Need of Voltage Support:
Voltage support using switched shunt devices with high reac-
tive power and continuous voltage control are added to buses
that fall into these two categories:

1) Buses with voltage less than 0.9 p.u.
2) Buses with the highest voltage instability per N-R itera-

tion for a repeatedly unconverging ACPF.
These buses are identified any time a base case is loaded

before dispatch adjustment begins. For the first category, shunt
devices are only added to violating bus with the least voltage
until all bus voltages rise above 0.9 p.u. This is because voltage
support at one bus will affect other buses within its sphere
of influence. Thus, this method prevents excessive addition of
reactive power and control elements to the network, which can
make convergence more difficult [8]. For the second category,
buses with high voltage instability were measured by the per-
unit voltage change at each bus from one N-R iteration to the
next. This is given by the equation below:

∆V̇i,k =
Vi,k − Vi,k−1

Vi,k
(6)

where k is the iteration number; Vi,k is the voltage at bus i
after iteration k.

These buses have the greatest potential to cause the N-R
method to diverge during iterations and they are considered
after the ACPF continually diverges for any dispatch adjust-
ment. By default, PSS/E provides information about the bus
with the largest ∆V̇ after each iteration.

c) Voltage Tuning at Regulated Buses: After the addi-
tion of switched shunt devices at a bus, the algorithm must
decide the appropriate voltage schedule (Vsch) for the bus.
In PSS/E, this is set using voltage bounds (Vhi and Vlo)

centered around the desired Vsch. Normally, the choice of
these control variables is made by human adjustments using
heuristic knowledge until a desired solution is found. However,
it is sub-optimal to hard code the algorithm using heuristic
knowledge, especially when shunt devices are connected to PQ
buses with no initial Vsch to reference. Moreover, the initial
Vsch of some generator buses may require tuning to achieve
convergence. Hence, the OPF feature of PSS/E was exploited
to allow the algorithm to calculate optimal values for the Vhi

and Vlo of shunt-regulated buses and Vsch of generator buses.
Pgen of generators are fixed since the desired generators’
dispatch are already known, therefore, the implicit objective
function of the optimization is given by (7) to tune Vsch but
also limit its deviation from initial values.

f(Vsch) = ρ

NPV∑
i=1

(
Vsch,if − Vsch,i0

)2
(7)

where NPV is the number of PV buses; Vsch,if & Vsch,i0 are
final and initial values of Vsch at bus i; ρ is a scalar quadratic
penalty factor.

For generator buses, ρ should be set at a high value to
discourage deviation from initial values unless unavoidable.
In contrast, ρ should be small for buses regulated with
shunt devices to allow free modulation of Vhi and Vlo. The
adjustment of the voltage setpoints is constrained within user-
defined limits (Vlim,lo & Vlim,hi). PSS/E applies inequality
constraints to the optimization problem using a logarithmic
barrier function given by (8) [25].

B (xcs) =

− (10µ)

N∑
i=1

{log (xi − xmin,i) + log (xmax,i − xi)} (8)

where xcs is a constrained state or control variable; xmin and
xmax are the limits of the inequality constraint; µ is a barrier
coefficient that regulates closeness of xcs to xmin and xmax;
N is the number of the xcs variable in the network.

The full optimization problem is therefore defined in (9):

L(x, λ) = f(x) +B(x) + [λ]T[h(x)] (9)

where x is all power system variables (state and control); f(x)
is the objective function; B(x) is the barrier function for each
inequality constraint; h(x) is the equality constraints includ-
ing power mismatch equations; λ is the Lagrange multiplier
variable.

The standard Kuhn-Tucker criterion is used to formulate
the optimality condition and Newton’s second-order solution
method is adopted to solve the formulated equations [25].
After the optimal voltage setpoints are determined, the ACPF
case is solved using the N-R method to ensure the calculated
voltage setpoints are stable. At this point, newly added shunt
devices with 0 MVAr output are removed.
3) Post-processing

Post-processing is carried out after a solved ACPF solution
has been obtained for a target dispatch as follows:

• Qgen of generators at 0 MW output in the target dispatch
are converted to shunt devices and these generators are
turned off.
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• Gradual removal of added MVar compensation.
• Conversion of shunt devices’ voltage control from con-

tinuous to discrete.
The removal of the added MVar compensation (henceforth

called shunt shaving) is performed by the gradual reduction
of the capacity of the shunt devices. The ACPF is solved after
each reduction until all additional shunt devices are removed
or the ACPF stops converging.

The complete flow chart of the hot-starting algorithm is
presented in Fig. 4. For the outer loop in Fig. 4 that starts from
the “Check bus voltages” step, a maximum iteration limit of
200 was set for the algorithm irrespective of the f value.

C. Hardware and Software

The hot-starting incremental algorithm was implemented
using the Python 2.7 application platform interface to run the
program in PSS/E 34.6.1. A computer with an Intel Core-i7-
9700 CPU and RAM of 16.0 GB was used.

III. CASE STUDY: 243-BUS REDUCED WECC SYSTEM

The proposed method was evaluated using two sets of
hourly generation and load dispatches received from the Na-
tional Renewable Energy Laboratory (NREL), USA, for the
243-bus reduced WECC system. The reduced system was

Start

Identify and load best candidate ACPF as base
point from pool of solved ACPFs

Turn on participating generators with off-status and turn off
non-participating slack generators in target case

Convert existing switched shunt devices from discrete to
continuous voltage control and provide excess MVAr capacity

Check bus voltages

yes no
Is least bus

voltage < 0.9

Add voltage support to
bus with lease voltage

Remove unused
shunt devices

Run OPF to determine Vhi and Vlo
for newly added shunt device and

solve the power flow

Set Pgen, Pload, and Qload from the
DCPF case as target dispatch

Run OPF to tune Vsch for PV
buses and solve the power flow

Set/Adjust f to
modulate step sizes

Adjust dispatch towards
target dispatch

Solve from
current V and δ

Calculate differences between current
dispatch and target dispatch

yes

yes no

Solved ?

yes

Load last solved
intermediate case

no Is dispatch

equal to

target ?

Perform post-

processing

Stop

no

Is f < fmax ?

Run OPF to determine Vhi and Vlo for newly

added shunt device and solve the power flow

Add voltage support to buses with

high ΔVi,k causing divergence
.

Fig. 4. Flow chart for the hot-starting algorithm.
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initially developed in [26], but the generator resource mix
has since been updated in [27] as presented in Table I, to
better model the actual resource mix in the WECC system.
The system has 139 load centers with active and reactive
power consumption. The first hourly dispatch set contains
8,784 dispatch cases (henceforth called Dataset 1) while the
other contains 6,926 dispatch cases (henceforth called Dataset
2). Each of these dispatch cases, calculated using DCOPF, only
contain Pgen, and Pload, for several hours in a year. Note
that there was no consideration of transmission losses in the
DCOPF calculations, these losses would have to be supplied
by the slack generators in the corresponding ACPF cases.

TABLE I
GENERATOR RESOURCE MIX IN REDUCED WECC SYSTEM

Generator Type No. of
generator

Max. P
capacity (GW)

Max. Q
capacity (±GVAr)

Biomass 5 1.8 0.4
Coal 18 44.6 15.4
Diesel 3 0.0 0.0
Gas 47 108.6 35.8
Generic Renewable 1 0.1 0.0
Geothermal 5 4.2 1.4
Hydro 25 60.5 23.4
Nuclear 3 7.7 2.8
Pumped Storage 2 4.3 1.7
Solar 20 28.3 11.0
Wind 17 21.0 5.5

A. Stage 1: The Simple DC-to-ACPF Algorithm

Two separate reference ACPF were obtained for Datasets
1 & 2. These reference ACPF have initial Vsch for their
regulated buses along with load power factors. Both include
existing switched shunt MVar compensators with discrete
voltage control on 7 buses with a total capacity of 6,100 MVAr.
The simple DC-to-ACPF algorithm in stage 1 was deployed
to convert the hourly dispatch cases in both datasets to ACPF.
Table II presents the number of ACPF cases in each dataset
that were solved at this stage.

TABLE II
CASES SOLVED BY THE SIMPLE DC-TO-ACPF TOOL IN STAGE 1

Dataset Solved ACPF Unsolved ACPF
1 8,781 3
2 4,469 2,457

Dataset 2 has many unsolved cases compared to Dataset
1. It was suspected that Dataset 2 may have some errors
in its DCOPF calculations, nevertheless, it provided a worst-
case scenario for the evaluation of the hot-starting algorithm.
Table III shows the percentage of the solved cases with at

least one bus violating various voltage limits and the average
number of buses at which the violations occur.

Note the initial Vsch in both reference ACPF range from
1.0 to 1.128 p.u., thus the acceptable voltage range across the
network was taken to be 0.9 to 1.14 p.u. Table III shows the
proportion of solved cases in Dataset 2 that have violating
buses is greater than in Dataset 1, but only a few buses per
violating case exceed the voltage limits.

B. Stage 2: The Hot-starting Incremental Algorithm

The unsolved cases from stage 1 were passed to stage 2
where the developed hot-starting algorithm was used to solve
them. For Dataset 1 with three unsolved cases, their dispatches
(Pgen, Pload & Qload) were set as target dispatch. Then the
algorithm found the most suitable starting base cases from the
pool of already-solved cases in stage 1 as shown in Table IV.
The cases are represented as m-d-h, where m, d, and h, are
month, day and hour of dispatch respectively. The search for
the most suitable starting base case was restricted to solved
cases in the same month as the target dispatch to increase
search speed. Thus, the average search time was about 4.4 s.
Table IV shows the most suitable starting base case for Case
1 is on a different day, 122 hours away. This justifies the
deployment of the proposed search method over choosing
the nearest solved case. Moreover, some datasets may not be
delineated as hours in a year, making it impossible to know
the nearest solved case in time.

To run the hot-starting incremental algorithm, certain user-
defined variables are required as explained in Section III.B.2.
For this case study, the values used for these variables are
shown in Table V.

The properties of the final ACPF cases created by the hot-
starting algorithm with respect to the target dispatches are
presented in Table VI. ∆Pgen,ave, ∆Pgen,max, ∆Pload,ave, and
∆Pload,max, are all zero, showing the algorithm successfully
adjusted the generator and load dispatch of the starting base
cases to the same values as the target dispatch. Therefore, it
indirectly solved the ACPF-equivalent of the target dispatch
case. The table also shows significant differences between
MVar compensation from the shunt devices before and after
shunt shaving. This capability of the hot-starting algorithm
to add appropriate voltage support for ACPF solution will
be useful to power systems planners to reveal reactive power
requirements of a grid under future dispatch scenarios. Fig. 5
shows the Vsch of the generators in the three cases compared
to the initial Vsch in the reference cases. To obtain a solution,
the hot-starting algorithm was able to automatically tune the
Vsch with limited deviation from the initial Vsch and within the
defined voltage limits in Table V. Furthermore, Fig. 5 shows

TABLE III
PROPORTION OF SOLVED CASES VIOLATING VOLTAGE LIMITS IN STAGE 1

Voltage ranges (p.u.)
Dataset 1 Dataset 2
% of solved cases with
violations

Average no. of violating
buses per violating case

% of solved cases with
violations

Average no. of violating
buses per violating case

< 0.90 or > 1.14 43.8% 1.27 61.60% 2.04
< 0.85 or > 1.17 0.28% 2.50 16.65% 1.40
< 0.80 or > 1.20 0.046% 5.75 3.18% 1.19
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TABLE IV
STARTING BASE CASES TO HOT-START ACPF SOLUTION

Case Target dispatch Starting base case
1 10–31–16 10–26–13
2 10–8–21 10–8–22
3 12–8–19 12–8–20

TABLE V
USER-DEFINED VARIABLES FOR HOT-STARTING ALGORITHM

User-defined variables Case study values
finit 0.05
∆f 0.3 ×f
fmax 2
ρ 10,000
Vlim,lo 0.9
Vlim,hi 1.14
µ 0.0001
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1.2
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Fig. 5. Initial Vsch and tuned Vsch for the final ACPF of the 3 cases.

that only one bus in Case 3 violates the prescribed upper
voltage limit, all other buses in the three cases have voltages
within the set limits. This shows the ability of the hot-starting
algorithm to provide ACPF solutions with desirable voltage
levels at a target dispatch.

For Dataset 2 with suspect dispatches, 500 random cases
were selected out of the unsolved cases. Vlim,hi and Vlim,lo

were ignored to allow for convergence since about two-thirds
of the solved cases in stage 1 have buses that violate voltage
limits (see Table III). All other parameters in Table V were
kept constant. The algorithm reached the maximum iteration
limit for 6 out of the 500 cases, so results for these were
not presented. ∆Pgen,ave and ∆Pgen,max plotted on Fig. 6
show that the ACPF created for 345 dispatch cases reached
their target dispatch with zero deviation. 44 more ACPF
cases had dispatches close to their target dispatches with
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Fig. 6. Bus Voltages for the final ACPF of the 3 cases.
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Fig. 7. Differences between target dispatch and dispatch in the ACPF cases
solved by the hot-starting algorithm.

∆Pgen,ave and ∆Pgen,max in the range of 0–0.5 MW and
0.5–1 MW respectively. If this is set as a success criterion
(i.e., ∆Pgen,ave ≤ 0.5 MW and ∆Pgen,max ≤ 1 MW), then
the success rate of the hot-starting algorithm is 77.8% for the
cases in Dataset 2.

Figure 8 is a plot of the number and capacity of retained
shunt devices after shunt shaving for the ACPF cases that
passed the success criterion. Many of these cases require sig-
nificant MVar compensation to maintain ACPF convergence.
This shows the operating conditions of these cases were not
within their RS. Thus, it was necessary for the algorithm to
add and retain MVar compensation to increase RS and avoid
compromising the ACPF solutions. Finally, Fig. 9 shows the
run time of the algorithm can be highly disparate, ranging from
some seconds to several minutes. The average run times for
cases that passed and failed the success criterion were 34.2 s

TABLE VI
PROPERTIES OF THE ACPF CREATED BY THE HOT-STARTING ALGORITHM WITH RESPECT TO TARGET DISPATCH

Properties
Case 1 Case 2 Case 3

Starting Base
case ACPF

Final
ACPF

Starting Base
case ACPF

Final
ACPF

Starting Base
case ACPF

Final
ACPF

Average Pgen difference w.r.t target dispatch, ∆Pgen,ave (MW)a 312.30 0.0 88.05 0.0 50.87 0.0
Maximum Pgen difference w.r.t target dispatch, ∆Pgen,max (MW)a 3310.64 0.0 1449.40 0.0 1449.40 0.0
Average Pload difference w.r.t target dispatch, ∆Pload,ave (MW) 50.65 0.0 31.74 0.0 10.02 0.0
Maximum Pload difference w.r.t target dispatch, ∆Pload,max (MW) 370.49 0.0 248.40 0.0 63.00 0.0
Q from switched shunt devices before shunt shaving [No. of devices] (MVAr) 3097.27 [15] 3582.55 [34] 4082.15 [31]
Q from switched shunt devices after shunt shaving [No. of devices] (MVAr) 1198.47 [2] 776.99 [5] 261.73 [3]
Algorithm run time (s) 24.7 20.2 21.9
aExcluding slack generator
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MVar compenstion in final ACPFs after shunt shaving
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and 92.1 s respectively, while the overall average run time is
46.7 s.

IV. CONCLUSION

This work explores the use of a two-stage approach to
convert dispatch cases from DCOPF to ACPF with minimal
human intervention. The first stage attempts to solve the
formulated ACPF cases using N-R method from the generic
flat start. Unsolved cases in the first stage are passed down to
the second stage where a hot-starting incremental algorithm
indirectly solves their ACPF from a suitable base case while
automatically adding MVar compensation and tuning voltage
setpoints. Conversion of two sets of dispatch cases was used as
a case study to test the performance of the proposed conversion
method. The first dataset represented a typical scenario with
reasonably accurate dispatch cases while the other represented
an extreme scenario with suspect dispatch cases. The algorithm
based on the proposed methods successfully converted 100%
of the dispatch cases in the first dataset to solved ACPF and
77.8% were converted in the second dataset. It was noted
that algorithm run time is highly disparate ranging from some
seconds to several minutes, the average run time for about
500 solved cases was less than 1 minute. Sub-methods of the
deployed hot-starting algorithm such as the OPF-based tuning
of voltage setpoints and automated MVar compensation addi-
tion can be used to replace heuristics in choosing generators
voltage schedule and reactive power planning respectively.

Future work will focus on using the proposed method for
larger power systems such as the full WECC model with
10,000 buses. The voltage setpoint tuning method may require
some modifications since the optimization technique deployed
can be slow for some large systems. It will also be desirable to
develop automatable methods to identify inaccurate dispatches
from DCOPF before conversion to ACPF commences.
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